Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14797-14806, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37608745

RESUMO

Per- and polyfluoroalkyl substances (PFAS) occur in the environment as mixtures, yet mixture toxicity remains poorly understood. Aqueous film-forming foams (AFFFs) are a common source of PFAS. Our objective was to examine chronic effects of a complex PFAS mixture on amphibian growth and development. We tested toxicity of a five-chemical PFAS mixture summing to 10 µg/L and that accounts for >90% of the PFAS in AFFF-affected surface waters: perfluorooctane sulfonate (PFOS, 40%), perfluorohexane sulfonic acid (PFHxS, 30%), perflurooctanoic acid (PFOA, 12.5%), perfluorohexanoic acid (PFHxA, 12.5%), and perfluoropentanoic acid (PFPeA, 5%). We also included treatments to determine whether PFOS drove mixture toxicity and whether PFOS and mixture components act additively. We exposed Northern leopard frog (Rana pipiens) larvae through metamorphosis (∼130 d) in outdoor mesocosms. After 21 days of exposure, the larval body condition fell ∼5% relative to controls in the 4 µg/L PFOS treatment and mixtures lacking PFOS. At metamorphosis, the full 5-component 10 µg/L PFAS mixture reduced mass by 16% relative to controls. We did not observe effects on development. Our results indicate that toxicity of PFOS and other PFAS mixtures typical of AFFF sites act additively and that PFOS is not more inherently toxic than other mixture components.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Água , Rana pipiens , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Larva , Tamanho Corporal
2.
Environ Toxicol Chem ; 41(6): 1407-1415, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199880

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are contaminants of concern due to their widespread occurrence in the environment, persistence, and potential to elicit a range of negative health effects. Per- and polyfluoroalkyl substances are regularly detected in surface waters, but their effects on many aquatic organisms are still poorly understood. Species with thyroid-dependent development, like amphibians, can be especially susceptible to PFAS effects on thyroid hormone regulation. We examined sublethal effects of aquatic exposure to four commonly detected PFAS on larval northern leopard frogs (Rana [Lithobates] pipiens), American toads (Anaxyrus americanus), and eastern tiger salamanders (Ambystoma tigrinum). Animals were exposed for 30 days (frogs and salamanders) or until metamorphosis (toads) to 10, 100, or 1000 µg/L of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), or 6:2 fluorotelomer sulfonate (6:2 FTS). We determined that chronic exposure to common PFAS can negatively affect amphibian body condition and development at concentrations as low as 10 µg/L. These effects were highly species dependent, with species having prolonged larval development (frogs and salamanders) being more sensitive to PFAS than more rapidly developing species (toads). Our results demonstrate that some species could experience sublethal effects at sites with surface waters highly affected by PFAS. Our results also indicate that evaluating PFAS toxicity using a single species may not be sufficient for accurate amphibian risk assessment. Future studies are needed to determine whether these differences in susceptibility can be predicted from species' life histories and whether more commonly occurring environmental levels of PFAS could affect amphibians. Environ Toxicol Chem 2022;41:1407-1415. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Bufonidae , Ecotoxicologia , Fluorocarbonos/toxicidade , Larva , Rana pipiens , Urodelos
3.
Environ Toxicol Chem ; 40(3): 717-726, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32164037

RESUMO

Studies of the toxicity of poly- and perfluoroalkyl substances (PFAS) on amphibians, especially after metamorphosis, are limited. We examined effects of dermal PFAS exposure (30 d) on survival and growth of juvenile American toads (Anaxyrus americanus), eastern tiger salamanders (Ambystoma tigrinum), and northern leopard frogs (Rana pipiens). Chemicals included perfluorooctanoic acid, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) at 0, 80, 800, or 8000 ppb on a moss dry weight basis. Exposure to PFAS influenced final snout-vent length (SVL) and scaled mass index (SMI), a measure of relative body condition. Observed effects depended on species and chemical, but not concentration. Anurans exposed to PFOS, PFHxS (frogs only), and 6:2 FTS demonstrated reduced SVL versus controls, whereas salamanders exposed to 6:2 FTS showed increased SVL. Frogs exposed to PFHxS and 6:2 FTS and toads exposed to PFOS had increased SMI compared to controls; salamanders did not demonstrate effects. Concentrations of 6:2 FTS in substrate decreased substantially by 30 d, likely driven by microbial action. Perfluorooctane sulfonate had notable biota-sediment accumulation factors, but was still <1. Although a no-observable-effect concentration could not generally be determined, the lowest-observable-effect concentration was 50 to 120 ppb. Survival was not affected. The present study demonstrates that PFAS bioaccumulation from dermal exposures and sublethal effects are dependent on species, chemical, and focal trait. Environ Toxicol Chem 2021;40:717-726. © 2020 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Bufonidae , Fluorocarbonos/toxicidade , Rana pipiens , Urodelos
4.
Environ Toxicol Chem ; 40(3): 711-716, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072676

RESUMO

Per-/polyfluoroalkyl substances (PFAS) are pervasive in aquatic systems globally and capable of causing detrimental effects on human and wildlife health. However, most studies are conducted under artificial conditions that are not representative of environmental exposures. Environmental exposures are characterized by multiple routes of exposure, low aquatic PFAS levels, and greater environmental variability than laboratory tests. Determining whether these factors influence toxicity is critical for understanding the effects of PFAS on aquatic life, including amphibians. Our goal was to assess the impact of PFAS on an amphibian under semirealistic conditions. We reared northern leopard frog (Rana pipiens) larvae in outdoor mesocosms containing sediment spiked to low, medium, and high levels (nominally 10, 100, or 1000 ppb dry wt) of perfluorooctanesulfonic acid (PFOS) or perfluorooctanoic acid (PFOA) for 30 d. Larvae in all PFOS treatments and the medium-PFOA treatment were approximately 1.5 Gosner stages less developed than control animals after 30 d. Notably, these developmental delays were observed at PFOS concentrations in the water as low as 0.06 ppb, which is considerably lower than levels associated with developmental effects in laboratory studies. Our results suggest that deriving toxicity values from laboratory studies examining aquatic exposure only may underestimate the effects of environmental PFAS exposure. Environ Toxicol Chem 2021;40:711-716. © 2020 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Anfíbios , Animais , Exposição Ambiental , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Humanos , Larva , Rana pipiens
5.
Sci Total Environ ; 765: 142730, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077234

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are contaminants of concern due to their persistence, potential to bioaccumulate, and toxicity. While dietary exposure is the primary route of exposure for terrestrial species, data on dietary PFAS uptake and adverse effects are largely restricted to mammals. As such, substantial data gaps exist that hinder ecological risk assessment, including environmentally relevant exposure levels and taxa. Using a 30-d laboratory experiment, we examined the effects of dietary PFAS-exposure on post-metamorphic tiger salamanders (Ambystoma tigrinum). We fed salamanders crickets exposed to perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), or 6:2 fluorotelomer sulfonate (6:2 FTS) at low (<1.0), medium (2-5), or high (16-62) ng PFAS/g/d (wet weight) dose rates. We found that only PFOS resulted in substantial biomagnification. Despite limited evidence for biomagnification, PFAS altered growth and generally reduced body condition. Salamanders with the highest burdens of PFOS grew less and had lower body conditions, while burdens of PFHxS and PFOA were only associated with reduced growth. There was no evidence that environmentally relevant doses of PFAS increase liver size in salamanders. Our results demonstrate that dietary exposure and accumulation of PFAS can impact fitness-related traits in amphibians and contribute to trophic transfer in terrestrial food webs.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Alcanossulfonatos , Ácidos Alcanossulfônicos/toxicidade , Animais , Dieta , Exposição Dietética , Poluentes Ambientais/toxicidade , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Cadeia Alimentar , Urodelos
6.
J Hazard Mater ; 397: 122782, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361141

RESUMO

Degradation of linear (L) and branched (Br) perfluorooctanesulfonate (PFOS) using nNiFe° particles supported on activated carbon (AC) and heat is demonstrated for the first time and with several lines of evidence. At 60 °C, PFOS degradation plateaued at 50 ± 6%, while at 50 °C, 94 ± 4.1 % PFOS transformed. The accelerated iron corrosion at the higher temperature is attributed to the lower PFOS transformation at 60 °C. However, at both temperatures, ≥ 97 % of the PFOS transformed was accounted for by the moles of fluoride generated. At 60 °C, PFOS degradation rates were estimated at 0.028 ± 0.003 h-1 and fluoride and sulfite generation rates of 0.70 ± 0.165 h-1 and 0.62 ± 0.157 h-1, respectively, with no differences between L-PFOS and total Br-PFOS. Using time-of-flight mass spectrometry, some organic products were identified in the particle extracts from the 60 °C reaction. Products included single-bonded C8 polyfluoroalkyl sulfonates (F16 to F7) and alkyl acids (PFCAs, C4-C8) and one perfluorinated C8 desulfonated product supporting both defluorination and desulfonation pathways. Most of the organic products were gone after the first 25 h. High PFOS mineralization using nNiFe°-AC technology warrants further investigation for its use in permeable reactive barriers.

7.
Toxicol Sci ; 172(2): 417-434, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31428778

RESUMO

Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Dopamina/metabolismo , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/metabolismo , Linhagem Celular , Poluentes Ambientais/metabolismo , Fluorocarbonos/metabolismo , Humanos , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Water Environ Res ; 91(12): 1669-1677, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31260167

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have been used in a variety of consumer and industrial products and are known to accumulate in sewage sludge due to sorption and their recalcitrant nature. Treatment processes ensure safe and high-quality biosolids by reducing the potential for adverse environmental impacts such as pathogen levels; however, they have yet to be evaluated for their impact on the fate of PFAS. The objective of this study was to compare PFAS concentrations in four commercially available biosolid-based products that received different types of treatments: heat treatment, composting, blending, and thermal hydrolysis. Seventeen perfluoroalkyl acids (PFAAs) were quantified using liquid chromatography with tandem quadrupole time-of-flight mass spectrometry followed by screening for 30 PFAA precursors. Treatment processes did not reduce PFAA loads except for blending, which served only to dilute concentrations. Several PFAA precursors were identified with 6:2 and 8:2 fluorotelomer phosphate diesters in all samples pre- and post-treatment. PRACTITIONER POINTS: Heat treatment and composting increased perfluoroalkyl acid (PFAA) concentrations. Only dilution from blending with non-PFAS material decreased PFAA concentrations. Thermal hydrolysis process had no apparent effect on PFAA concentrations. PFAS sources are a greater driver of PFAS loads in biosolid-based products than treatment processes.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Espectrometria de Massas em Tandem
9.
Toxicol Appl Pharmacol ; 377: 114623, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195004

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds that are a major public health concern due to widespread use, long environmental and biological half-lives, detection in most human plasma samples, and links to multiple adverse health outcomes. The literature suggests that some PFAS may be neurotoxic. However, there are major gaps in the literature with respect to how environmentally-relevant doses during development may influence the nervous system. To address this gap, we utilized a sentinel species, Northern leopard frogs (Lithobates pipiens) to determine the effects of developmental exposure to environmentally relevant perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on major neurotransmitter systems. Frog larvae at Gosner stage 25 were exposed to 10, 100, or 1000 ppb PFOS or PFOA for 30 days before neurochemical analysis. High performance liquid chromatography (HPLC) with electrochemical detection or fluorescent detection assays was used to measure neurotransmitter levels, which were normalized to protein levels in each sample. Dopamine (DA) decreased significantly in the brains of frogs treated with PFOA (1000 ppb) and PFOS (100 and 1000 ppb). Significant increases in DA turnover also resulted from PFOA and PFOS treatment. Neither PFOS, nor PFOA produced detectable alterations in serotonin (nor its metabolite), norepinephrine, gamma-amino butyric acid (GABA), glutamate, or acetylcholine. PFAS body burdens showed that PFOS accumulated relative to dose, while PFOA did not. These data suggest that DArgic neurotransmission is selectively affected in developmentally exposed amphibians and that PFAS should be evaluated for a potential role in diseases that target the DA system.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Química Encefálica/efeitos dos fármacos , Caprilatos/toxicidade , Dopamina/metabolismo , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Síndromes Neurotóxicas/metabolismo , Rana pipiens , Animais , Carga Corporal (Radioterapia) , Relação Dose-Resposta a Droga , Feminino , Larva , Neurotransmissores/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transmissão Sináptica/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 178: 137-145, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31002968

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are ubiquitous contaminants that can bioaccumulate in aquatic taxa. Amphibians are particularly vulnerable to contaminants and sensitive to endocrine disruptors during their aquatic larval stage. However, few studies have explored PFAS uptake rates in amphibians, which is critical for designing ecotoxicology studies and assessing the potential for bioaccumulation. Uptake rates of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured for larval northern leopard frogs (Rana pipiens), American toads (Anaxyrus americanus), and eastern tiger salamanders (Ambystoma tigrinum) during a 240-h exposure to 10 and 1000 µg/L concentrations. We measured body burden and calculated bioconcentration factor (BCF) every 48 h during the experiments. For all species and exposures, body burdens often reached steady state within 48-96 h of exposure. Steady-state body burdens for PFOA and PFOS ranged from 3819 to 16,481 ng/g dry weight (BCF = 0.46-2.5) and 6955-489,958 ng/g dry weight (47-259 BCFs), respectively. Therefore, PFAS steady state occurs rapidly in the larval amphibians we studied and particularly for PFOS. This result reflects a high potential for PFAS trophic transfer because amphibians are often low in trophic position and are important prey for many aquatic and terrestrial species.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Bufonidae/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Larva/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Carga Corporal (Radioterapia) , Ecotoxicologia , Cadeia Alimentar
11.
Environ Sci Technol ; 51(23): 13869-13877, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29129060

RESUMO

Previous studies evaluating Vitamin B12 (VB12) with Ti(III)-citrate for potential use in in situ remediation of perfluorooctanesulfonate (PFOS) found that linear (L)-PFOS was unaltered. We explored if alternate reductants could overcome this limitation with a primary focus on nanoscale zerovalent zinc (nZn0). Transformation over time with VB12-nZn0 was quantified at 22, 70, and 90 °C for PFOS, at 70 °C for perfluorohexanesulfonate (PFHxS), and VB12-nFe0 and VB12-Pd0/nFe0 at 70 °C for PFOS. Only branched (br-) isomers were transformed generating F- (no SO42-) and polyfluoroalkyl intermediates/products. The absence of L-PFOS transformation by VB12 appears to be due to the inability of L-perfluoroalkyl sulfonates to complex with VB12 and not an activation energy issue that can be overcome by stronger reductants/catalysts. At 90 °C, 95% of br-PFOS isomers were transformed within 5 days. Isomer-specific removal rates were positively correlated to the br-CF3's proximity to the terminal CF3. Br-PFHxS transformation was approximately two times slower with less defluorination than br-PFOS. C8/C7 and C6/C5 polyfluorinated sulfonates from br-PFOS and br-PFHxS, respectively, were identified as both intermediates and apparent dead-end products. Pathways included 4 F replaced by 2 H and a C═C bond, and serial F replacement by H with up to 12 F atoms removed from br-PFOS.


Assuntos
Substâncias Redutoras , Vitamina B 12 , Alcanossulfonatos , Ácidos Alcanossulfônicos , Fluorocarbonos , Isomerismo
12.
Chemosphere ; 188: 599-607, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28917212

RESUMO

On January 9, 2014, a chemical mixture containing crude methylcyclohexanemethanol (MCHM) contaminated the water supply of Charleston, West Virginia. Although the mixture was later identified as a mix of crude MCHM and stripped propylene glycol phenyl ethers, initial risk assessment focused on 4-MCHM, the predominant component of crude MCHM. The mixture's exact composition and the toxicity differences between 4-MCHM, crude MCHM, and the tank mixture were unknown. We analyzed the chemical composition of crude MCHM and the tank mixture via GC/MS and, based on identified spectra, found that crude MCHM and the tank mixture differed in chemical composition. To evaluate acute developmental toxicity, zebrafish embryos were exposed to 0, 1, 6.25, 12.5, 25, 50, or 100 parts per million (ppm; mg/L) of 4-MCHM, crude MCHM, or the tank mixture. The percent mortality and percent hatch, larval morphology alterations, and larval visual motor response test were used to establish toxicity profiles for each of the chemicals or mixtures. The acute toxicity differed between 4-MCHM, crude MCHM and the tank mixture with significant differences in survival, hatching, morphology, and locomotion at levels as low as the short-term screening level of 1 ppm, suggesting a need for further research into human health risks. This study is the first to evaluate the developmental toxicity of the tank mixture and highlights that studies evaluating risk should not assume the effects of 4-MCHM or crude MCHM are representative of the Tank 396 mixture.


Assuntos
Vazamento de Resíduos Químicos , Cicloexanos/toxicidade , Rios/química , Poluentes Químicos da Água/análise , Animais , Cicloexanos/análise , Exposição Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Éteres Fenílicos , Abastecimento de Água/normas , West Virginia , Peixe-Zebra/embriologia
13.
Environ Pollut ; 230: 1099-1107, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28783897

RESUMO

Over the past decade, studies have shown that exposure to endocrine disrupting chemicals (EDCs) can cause gonadal intersex in fish. Smallmouth bass (Micropterus dolomieu) males appear to be highly susceptible to developing testicular oocytes (TO), the most prevalent form of gonadal intersex, as observed in various areas across the U.S. In this study, prevalence and severity of TO was quantified for smallmouth bass sampled from the St. Joseph River in northern Indiana, intersex biomarkers were developed, and association between TO prevalence and organic contaminants were explored. At some sites, TO prevalence reached maximum levels before decreasing significantly after the spawning season. We examined the relationship between TO presence and expression of gonadal and liver genes involved in sex differentiation and reproductive functions (esr1, esr2, foxl2, fshr, star, lhr and vtg). We found that vitellogenin (vtg) transcript levels were significantly higher in the liver of males with TO, but only when sampled during the spawning season. Further, we identified a positive correlation between plasma VTG levels and vtg transcript levels, suggesting its use as a non-destructive biomarker of TO in this species. Finally, we evaluated 43 contaminants in surface water at representative sites using passive sampling to look for contaminants with possible links to the observed TO prevalence. No quantifiable levels of estrogens or other commonly agreed upon EDCs such as the bisphenols were observed in our contaminant assessment; however, we did find high levels of herbicides as well as consistent quantifiable levels of PFOS, PFOA, and triclosan in the watershed where high TO prevalence was exhibited. Our findings suggest that the observed TO prevalence may be the result of exposures to mixtures of nonsteroidal EDCs.


Assuntos
Bass/fisiologia , Transtornos do Desenvolvimento Sexual/veterinária , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Bass/metabolismo , Biomarcadores/metabolismo , Disruptores Endócrinos/metabolismo , Estrogênios/metabolismo , Gônadas/efeitos dos fármacos , Indiana , Masculino , Rios/química , Estações do Ano , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
14.
Environ Toxicol Chem ; 36(7): 1947-1954, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28019697

RESUMO

Currently, the potential impact of insecticide mixtures to nontarget organisms is largely unknown, and additional study is needed. The present study investigated the mixture toxicity of the organophosphate insecticide phostebupirim and the pyrethroid insecticide cyfluthrin using 4 nontarget species including Daphnia magna, Hyalella azteca, Pimephales promelas (fathead minnow), and Danio rerio (zebrafish). For each species, the toxicity of equipotent mixtures was compared with the expected toxicity estimated using the independent action (IA) and concentration addition (CA) models. Lethal and sublethal responses to D. magna and H. azteca were best described with the IA model. For both fish species, mixture toxicity was significantly higher than that estimated using either mixture model. The synergism noted in fish exposed to the combination of phostebupirim and cyfluthrin was confirmed by exposing P. promelas larvae to a nontoxic dose of phostebupirim and a range of toxic cyfluthrin concentrations, and vice versa. Sublethal and lethal concentrations to fish were up to 7 times lower for the mixture than in concurrently run individual compound exposures. Potential mechanisms for the synergistic responses found in fish are presented. Environ Toxicol Chem 2017;36:1947-1954. © 2016 SETAC.


Assuntos
Inseticidas/toxicidade , Nitrilas/toxicidade , Organotiofosfatos/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Inseticidas/análise , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Espectrometria de Massas , Nitrilas/análise , Organotiofosfatos/análise , Piretrinas/análise , Especificidade da Espécie , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
15.
Arch Environ Contam Toxicol ; 68(4): 745-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25608617

RESUMO

A method was developed for the extraction and analysis of 2 organophosphate, 8 pyrethroid, and 5 neonicotinoid insecticides from the same water sample. A salted liquid-liquid extraction (LLE) was optimized with a solid-phase extraction (SPE) step that separated the organophosphates (OPs) and pyrethroids from the neonicotinoids. Factors that were optimized included volume of solvent and amount of salt used in the LLE, homogenization time for the LLE, and type and volume of eluting solvent used for the SPE. The OPs and pyrethroids were quantified using gas chromatography-mass spectrometry, and the neonicotinoids were quantified using liquid chromatography-diode array detector. Results showed that the optimized method was accurate, precise, reproducible, and robust; recoveries in river water spiked with 100 ng L(-1) of each of the insecticides were all between 86 and 114 % with RSDs between 2 and 8 %. The method was also sensitive with method detection limits ranging from 0.1 to 27.2 ng L(-1) depending on compounds and matrices. The optimized method was thus appropriate for the simultaneous extraction of 15 widely applied insecticides from three different classes and was shown to provide valuable information on their environmental fate from field-collected aqueous samples.


Assuntos
Inseticidas/análise , Organofosfatos/análise , Piretrinas/análise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Cromatografia Líquida , Água Doce/química , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção
16.
Environ Toxicol Chem ; 34(1): 197-207, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331413

RESUMO

A 3-yr study was conducted on a corn field in central Illinois, USA, to understand the fate and effects of an insecticidal formulation containing the active ingredients phostebupirim and cyfluthrin. The objectives were to determine the best tillage practice (conventional vs conservation tillage) in terms of grain yields and potential environmental risk, to assess insecticidal exposure using concentrations measured in soil and runoff water and sediments, to compare measured insecticidal concentrations with predicted concentrations from selected risk assessment exposure models, and to calculate toxicity benchmarks from laboratory bioassays performed on reference aquatic and terrestrial nontarget organisms, using individual active ingredients and the formulation. Corn grain yields were not significantly different based on tillage treatment. Similarly, field concentrations of insecticides were not significantly (p > 0.05) different in strip tillage versus conventional tillage, suggesting that neither of the tillage systems would enable greater environmental risk from the insecticidal formulation. Risk quotients were calculated from field concentrations and toxicity data to determine potential risk to nontarget species. The insecticidal formulation used at the recommended rate resulted in soil, sediment, and water concentrations that were potentially harmful to aquatic and terrestrial invertebrates, if exposure occurred, with risk quotients up to 34.


Assuntos
Inseticidas/análise , Poluentes do Solo/análise , Solo/química , Zea mays/química , Produtos Agrícolas/química , Illinois , Inseticidas/toxicidade , Nitrilas/análise , Nitrilas/toxicidade , Organotiofosfatos/análise , Organotiofosfatos/toxicidade , Piretrinas/análise , Piretrinas/toxicidade , Medição de Risco , Poluentes do Solo/toxicidade
17.
Environ Toxicol Chem ; 34(2): 258-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25376402

RESUMO

Despite the extensive use of the neonicotinoid insecticide clothianidin, and its known toxicity to beneficial insects such as pollinators, little attention has been given to its fate under agricultural field conditions. The present study investigated the fate and toxicity of clothianidin applied every other year as a corn seed-coating at 2 different rates, 0.25 mg/seed and 0.50 mg/seed, in an agricultural field undergoing a corn-soybean annual rotation, and conservation tillage. Concentrations were measured in soil, surface runoff, infiltration, and groundwater from 2011 to 2013. Clothianidin was detected at low concentrations in soil and water throughout the 2-yr corn and soybean rotation. Low and no-tillage had little or no effect on clothianidin concentrations. Laboratory toxicity bioassays were performed on nontarget species, including Daphnia magna, Hyalella azteca, Chironomus dilutus, Pimephales promelas and Eisenia fetida. Risk quotients were calculated from clothianidin concentrations measured in the field and compared with the laboratory toxicity bioassay results to assess the environmental risk of the insecticide. The risk quotient was found to be lower than the level of concern for C. dilutus, which was the most sensitive species tested; therefore, no short-term environmental risk was expected for the species investigated in the present study.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Guanidinas/análise , Guanidinas/toxicidade , Tiazóis/análise , Tiazóis/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bioensaio , Chironomidae/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Água Subterrânea/química , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides , Oligoquetos/efeitos dos fármacos , Sementes/química , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zea mays/química
18.
Chemosphere ; 96: 67-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23948608

RESUMO

Hydrophobic organic contaminants readily partition from aqueous to organic phases in aquatic systems with past research largely focusing on sediment. However, within many aquatic systems, matrices such as leaf material and detritus are abundant and ecologically important, as they may represent a primary exposure route for aquatic invertebrates. The objectives of the present study were to examine partitioning and toxicity to Hyalella azteca among permethrin and p,p'-DDT contaminated sediment, leaf, and a sediment-leaf mixture. Log organic carbon-water partitioning coefficients ranged from 4.21 to 5.82 for both insecticides, and were greatest within sediment and lowest in coarse leaf material. H. azteca lethal concentrations for 50% of the population (LC50s) ranged from 0.5 to 111µgg(-1) organic carbon, and were dependent on the matrix composition. The variation in sorption and toxicity among matrices common within stream ecosystems suggests that the ecological niche of aquatic organisms may be important for estimating risk of hydrophobic pesticides.


Assuntos
DDT/química , Substâncias Húmicas , Inseticidas/química , Permetrina/química , Poluentes Químicos da Água/química , Anfípodes , Animais , Carbono , DDT/toxicidade , Ecologia , Sedimentos Geológicos/química , Inseticidas/toxicidade , Invertebrados , Dose Letal Mediana , Permetrina/análise , Permetrina/toxicidade , Rios , Poluentes Químicos da Água/toxicidade
19.
Anal Chim Acta ; 807: 51-60, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356220

RESUMO

Solid-phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS) was developed for the study of interactions between polycyclic aromatic hydrocarbons (PAHs) and dissolved organic matter (DOM). After the determination of the best conditions of extraction, the tool was applied to spiked water to calculate the dissolved organic carbon water distribution coefficient (K(DOC)) in presence of different mixtures of PAHs and Aldrich humic acid. The use of deuterated naphthalene as internal standard for freely dissolved PAH quantification was shown to provide more accuracy than regular external calibration. For the first time, K(DOC) values of 18 PAHs were calculated using data from SPME-GC-MS and fluorescence quenching; they were in agreement with the results of previous studies. Competition between PAHs, deuterated PAHs and DOM was demonstrated, pointing out the non-linearity of PAH-DOM interactions and the stronger interactions of light molecular weight PAHs (higher K(DOC) values) in absence of high molecular weight PAHs.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida , Poluentes Químicos da Água/análise , Deutério/química , Corantes Fluorescentes/química , Cromatografia Gasosa-Espectrometria de Massas/normas , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/normas , Padrões de Referência , Poluentes Químicos da Água/isolamento & purificação
20.
J Chromatogr A ; 1267: 259-65, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22897867

RESUMO

This paper details a method for the separation and identification of fourteen organic compounds commonly found as constituents in commercial smokeless powders using a hexyl acrylate-based porous monolith. Capillary electrochromatography (CEC) coupled to UV and time of flight-mass spectrometry (TOF-MS) methods were both explored. The CEC-UV method provides an effective and efficient method for the detection of all components in the additive package of the powder. The TOF-MS procedure provides better sensitivity and selectivity allowing an additional confirmation of the presence of the subset of those compounds, which are detectable via positive and/or negative ion electrospray ionization mass spectrometry. Both methods were used for the analysis of smokeless powder components in a mixed standard as well as in the determination of the composition of the additive package of individual powders.


Assuntos
Eletrocromatografia Capilar/métodos , Substâncias Explosivas/química , Substâncias Explosivas/isolamento & purificação , Pós/química , Pós/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...